Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Yakugaku Zasshi ; 144(2): 183-195, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38296496

RESUMEN

Tannins are a group of polyphenols that possess the ability to precipitate proteins, causing an undesirable astringent taste by interacting with salivary peptides. This interaction deactivates the digestive enzymes; therefore, tannins are considered as plant defense substances. The health benefits of tannins and related polyphenols in foods and beverages have been demonstrated by biological and epidemiological studies; however, their metabolism in living plants and the chemical changes observed during processing of foods and medicinal herbs raises some questions. This review summarizes our studies concerning dynamic changes observed in tannins. Ellagitannins present in the young leaves of Camellia japonica and Quercus glauca undergo oxidative degradation as the leaves mature. Similar oxidative degradation is also observed in whiskey when it is kept for aging in oak barrels, and in decaying wood caused by fungi in natural forests. In contrast, ellagitannins have been observed to undergo reduction in the leaves of Carpinus, Castanopsis, and Triadica species as the leaves mature. This phenomenon of reductive metabolism in leaves enabled us to propose a new biosynthetic pathway for the most fundamental ellagitannin acyl groups, which was also supported by biomimetic synthetic studies. Polyphenols undergo dynamic changes during the process of food processing. Catechin in tea leaves undergo oxidation upon mechanical crushing to generate black tea polyphenols. Though detailed production mechanisms of catechin dimers have been elucidated, structures of thearubigins (TRs), which are complex mixtures of oligomers, remain ambiguous. Our recent studies suggested that catechin B-ring quinones couple with catechin A-rings during the process of oligomerization.


Asunto(s)
Catequina , Taninos , Taninos/química , Taninos/metabolismo , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Catequina/química , Catequina/metabolismo , Polifenoles , Té/química , Oxidación-Reducción
2.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 111-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37602531

RESUMEN

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.


Asunto(s)
Inoculantes Agrícolas , Lactobacillales , Femenino , Bovinos , Animales , Poaceae/metabolismo , Ensilaje/análisis , Taninos/farmacología , Lactancia , Inoculantes Agrícolas/metabolismo , Fermentación , Ácido Láctico/metabolismo , Digestión , Leche/química , Dieta/veterinaria , Taninos Hidrolizables/análisis , Taninos Hidrolizables/metabolismo , Taninos Hidrolizables/farmacología , Rumen/metabolismo , Extractos Vegetales/farmacología , Rumiantes , Valor Nutritivo , Zea mays/metabolismo
3.
J Pharm Biomed Anal ; 233: 115477, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37267874

RESUMEN

Pomegranate extracts standardized to punicalagins are a rich source of ellagitannins including ellagic acid (EA). Recent evidence suggests that gut microbiota-derived urolithin (Uro) metabolites of ellagitannins are pharmacologically active. Studies have evaluated the pharmacokinetics of EA, however, little is known about the disposition of urolithin metabolites (urolithin A (UA) and B (UB)). To address this gap, we developed and applied a novel ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay for the characterization of EA and Uro oral pharmacokinetics in humans. Subjects (10/cohort) received a single oral dose (250 or 1000 mg) of pomegranate extract (Pomella® extract) standardized to contain not less than 30 % punicalagins, < 5 % EA, and not less than 50 % polyphenols. Plasma samples, collected over 48 h, were treated with ß-glucuronidase and sulfatase to permit comparison between unconjugated and conjugated forms of EA, UA and UB. EA and urolithins were separated by gradient elution (acetonitrile/water, 0.1 % formic acid) using a C18 column connected to a triple quadrupole mass spectrometer operating in the negative mode. Conjugated EA exposure was ∼5-8-fold higher than unconjugated EA for both dose groups. Conjugated UA was readily detectable beginning ∼8 h post-dosing, however, unconjugated UA was detectable in only a few subjects. Neither form of UB was detected. Together these data indicate EA is rapidly absorbed and conjugated following oral administration of Pomella® extract. Moreover, UA's delayed appearance in the blood, primarily in the conjugated form, is consistent with gut microbiota-mediated metabolism of EA to UA, which is then rapidly converted to its conjugated form.


Asunto(s)
Granada (Fruta) , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Taninos Hidrolizables/metabolismo , Cromatografía Líquida de Alta Presión , Ácido Elágico , Extractos Vegetales
4.
Nutrients ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986236

RESUMEN

Helicobacter pylori (H. pylori) is an etiologic factor of peptic ulcer disease and gastric cancer. Virulent strains of H. pylori are correlated with the severity of gastritis, due to NF-κB activation and IL-8 expression at the epithelial level. Ellagitannins have been documented for antibacterial and anti-inflammatory activities, thus suggesting their potential use in gastritis. Recently, several authors, including our group, demonstrated that tannin-rich extracts from chestnut byproducts, at present considered agricultural waste, display promising biological activities. In this work, we detected high levels of polyphenols in hydroalcoholic extracts from chestnut leaves (Castanea sativa L.). Among polyphenols, the ellagitannin isomers castalagin and vescalagin (about 1% w/w of dry extract) were identified as potential bioactive compounds. In GES-1 cells infected by H. pylori, leaf extract and pure ellagitannins inhibited IL-8 release (IC50 ≈ 28 µg/mL and 11 µM, respectively). Mechanistically, the anti-inflammatory activity was partly due to attenuation of NF-κB signaling. Moreover, the extract and pure ellagitannins reduced bacterial growth and cell adhesion. A simulation of the gastric digestion suggested that the bioactivity might be maintained after oral administration. At the transcriptional level, castalagin downregulated genes involved in inflammatory pathways (NF-κB and AP-1) and cell migration (Rho GTPase). To the best of our knowledge, this is the first investigation in which ellagitannins from plant extracts have demonstrated a potential role in the interaction among H. pylori and human gastric epithelium.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Taninos Hidrolizables/metabolismo , FN-kappa B/metabolismo , Interleucina-8/metabolismo , Mucosa Gástrica/metabolismo , Extractos Vegetales/uso terapéutico , Gastritis/microbiología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células Epiteliales/metabolismo , Antiinflamatorios/uso terapéutico , Infecciones por Helicobacter/microbiología
5.
Pest Manag Sci ; 79(2): 598-606, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36214759

RESUMEN

BACKGROUND: Algal infestation in Korean lakes, rivers, and in agroecosystems is a catastrophic problem resulting in contaminated drinking and agricultural irrigation water. Developing allelochemical-based algicides has previously faced difficulties, including dosage requirements and chemical instability. Despite these challenges, these algicides have enormous potential for eco-friendly use. This study presents the efficient use of tannin derivatives as antialgal chemicals modeled on a tannin-rich stem extract of Rhus chinensis in a thermal processing application. RESULTS: Tannic acids are the key component of algal necrosis in R. chinensis stem extract, and although heat extraction from the stem increased the crude extraction yield 1.8-fold, the procedure induced the conversion of tannic acids to gallic acid, resulting in lower antialgal activity. Gallotannin showed stronger antialgal activity (The 50% lethal dosage (LD50 )= 44.6 mg L-1 ) than gallic acid (LD50  = 99.2 mg L-1 ), and the nonheated extract exhibited 3.7-fold lower LD50 (0.66 g L-1 ) than the heated extract (LD50  = 2.45 g L-1 ), resulting in 2.6-fold higher content of gallotannin. CONCLUSION: These results demonstrate that heat treatment of R. chinensis stems during the extraction process is not beneficial to algal control because of the acceleration of thermal tannin degradation, despite it showing higher crude extract yields. Therefore, it is suggested extraction processes minimizing the loss of tannic acids should be the preferred methods used to develop tannin-based natural algicides for controlling algal infestation. Tannic acids showed higher toxicity into necrosis of M. aeruginosa than gallic acid where heat-processed extraction of R. chinensis stems produces more gallic acid content resulting in thermal degradation of tannic complexes than the extraction of nonthermal treatment. © 2022 Society of Chemical Industry.


Asunto(s)
Microcystis , Rhus , Taninos/farmacología , Microcystis/metabolismo , Taninos Hidrolizables/metabolismo , Ácido Gálico/metabolismo , Ácido Gálico/farmacología , Extractos Vegetales/farmacología
6.
J Reprod Dev ; 68(3): 216-224, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35342119

RESUMEN

Treatments that elevate NAD+ levels have been found to improve oocyte quality in mice, cattle, and pigs, suggesting that NAD+ is vital during oocyte maturation. This study aimed to examine the influence of different NAD+ biosynthetic pathways on oocyte quality by inhibiting key enzymes. Porcine oocytes from small antral follicles were matured for 44 h in a defined maturation system supplemented with 2-hydroxynicotinic acid [2-HNA, nicotinic acid phosphoribosyltransferase (NAPRT) inhibitor], FK866 [nicotinamide phosphoribosyltransferase (NAMPT) inhibitor], or gallotannin [nicotinamide mononucleotide adenylyltransferase (NMNAT) inhibitor] and their respective NAD+ pathway modulators (nicotinic acid, nicotinamide, and nicotinamide mononucleotide, respectively). Cumulus expansion was assessed after 22 h of maturation. At 44 h, maturation rates were determined and mature oocytes were fixed and stained to assess spindle formation. Each enzyme inhibitor reduced oocyte maturation rate and adversely affected spindle formation, indicating that NAD+ is required for meiotic spindle assembly. Furthermore, NAMPT and NMNAT inhibition reduced cumulus expansion, whereas NAPRT inhibition affected chromosomal segregation. Treating oocytes with gallotannin and nicotinamide mononucleotide together showed improvements in spindle width, while treating oocytes with 2-HNA and nicotinic acid combined showed an improvement in both spindle length and width. These results indicate that the salvage pathway plays a vital role in promoting oocyte meiotic progression, while the Preiss-Handler pathway is essential for spindle assembly.


Asunto(s)
Niacina , Mononucleótido de Nicotinamida , Animales , Bovinos , Taninos Hidrolizables/metabolismo , Meiosis , Ratones , NAD/metabolismo , Niacina/metabolismo , Niacina/farmacología , Mononucleótido de Nicotinamida/metabolismo , Oocitos/metabolismo , Porcinos
7.
Oxid Med Cell Longev ; 2022: 3848084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237379

RESUMEN

Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.


Asunto(s)
Antialérgicos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Ácido Elágico/farmacología , Taninos Hidrolizables/farmacología , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Sustancias Protectoras/farmacología , Animales , Antialérgicos/metabolismo , Antiinflamatorios/metabolismo , Antineoplásicos/metabolismo , Ácido Elágico/metabolismo , Frutas/química , Frutas/metabolismo , Tracto Gastrointestinal/metabolismo , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Hipoglucemiantes/metabolismo , Fitoterapia/métodos , Extractos Vegetales/metabolismo , Plantas/química , Plantas/metabolismo , Polifenoles/metabolismo , Sustancias Protectoras/metabolismo
8.
Biochem Biophys Res Commun ; 591: 130-136, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33454058

RESUMEN

The coronavirus disease (COVID-19) pandemic, resulting from human-to-human transmission of a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), has led to a global health crisis. Given that the 3 chymotrypsin-like protease (3CLpro) of SARS-CoV-2 plays an indispensable role in viral polyprotein processing, its successful inhibition halts viral replication and thus constrains virus spread. Therefore, developing an effective SARS-CoV-2 3CLpro inhibitor to treat COVID-19 is imperative. A fluorescence resonance energy transfer (FRET)-based method was used to assess the proteolytic activity of SARS-CoV-2 3CLpro using intramolecularly quenched fluorogenic peptide substrates corresponding to the cleavage sequence of SARS-CoV-2 3CLpro. Molecular modeling with GEMDOCK was used to simulate the molecular interactions between drugs and the binding pocket of SARS-CoV-2 3CLpro. This study revealed that the Vmax of SARS-CoV-2 3CLpro was about 2-fold higher than that of SARS-CoV 3CLpro. Interestingly, the proteolytic activity of SARS-CoV-2 3CLpro is slightly more efficient than that of SARS-CoV 3CLpro. Meanwhile, natural compounds PGG and EGCG showed remarkable inhibitory activity against SARS-CoV-2 3CLpro than against SARS-CoV 3CLpro. In molecular docking, PGG and EGCG strongly interacted with the substrate binding pocket of SARS-CoV-2 3CLpro, forming hydrogen bonds with multiple residues, including the catalytic residues C145 and H41. The activities of PGG and EGCG against SARS-CoV-2 3CLpro demonstrate their inhibition of viral protease activity and highlight their therapeutic potentials for treating SARS-CoV-2 infection.


Asunto(s)
Catequina/análogos & derivados , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Taninos Hidrolizables/farmacología , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Sitios de Unión , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Catequina/química , Catequina/metabolismo , Catequina/farmacología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Cinética , Modelos Moleculares , Estructura Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Unión Proteica , Dominios Proteicos , SARS-CoV-2/enzimología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
9.
Molecules ; 28(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615352

RESUMEN

Medicinal plants are rich sources of valuable molecules with various profitable biological effects, including antimicrobial activity. The advantages of herbal products are their effectiveness, relative safety based on research or extended traditional use, and accessibility without prescription. Extensive and irrational usage of antibiotics since their discovery in 1928 has led to the increasing expiration of their effectiveness due to antibacterial resistance. Now, medical research is facing a big and challenging mission to find effective and safe antimicrobial therapies to replace inactive drugs. Over the years, one of the research fields that remained the most available is the area of natural products: medicinal plants and their metabolites, which could serve as active substances to fight against microbes or be considered as models in drug design. This review presents selected flavonoids (such as apigenin, quercetin, kaempferol, kurarinone, and morin) and tannins (including oligomeric proanthocyanidins, gallotannins, ellagitannins, catechins, and epigallocatechin gallate), but also medicinal plants rich in these compounds as potential therapeutic agents in oral infectious diseases based on traditional usages such as Agrimonia eupatoria L., Hamamelis virginiana L., Matricaria chamomilla L., Vaccinium myrtillus L., Quercus robur L., Rosa gallica L., Rubus idaeus L., or Potentilla erecta (L.). Some of the presented compounds and extracts are already successfully used to maintain oral health, as the main or additive ingredient of toothpastes or mouthwashes. Others are promising for further research or future applications.


Asunto(s)
Antiinfecciosos , Enfermedades Transmisibles , Plantas Medicinales , Taninos/metabolismo , Flavonoides/uso terapéutico , Extractos Vegetales , Plantas Medicinales/metabolismo , Taninos Hidrolizables/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico
10.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299409

RESUMEN

Ellagitannins (ETs) are plant polyphenols with various health benefits. Recent studies have indicated that the biological activities of ETs are attributable to their degradation products, including ellagic acid and its gut microflora metabolites, such as urolithins. Insect tea produced in the Guangxi region, China, is made from the frass of moth larvae that feed on the ET-rich leaves of Platycarya strobilacea. Chromatographic separation of the Guangxi insect tea showed that the major phenolic constituents are ellagic acid, brevifolin carboxylic acid, gallic acid, brevifolin, and polymeric polyphenols. Chemical investigation of the feed of the larvae, the fresh leaves of P. strobilacea, showed that the major polyphenols are ETs including pedunculagin, casuarictin, strictinin, and a new ET named platycaryanin E. The new ET was confirmed as a dimer of strictinin having a tergalloyl group. The insect tea and the leaves of P. strobilacea contained polymeric polyphenols, both of which were shown to be composed of ETs and proanthocyanidins by acid hydrolysis and thiol degradation. This study clarified that Guangxi insect tea contains ET metabolites produced in the digestive tract of moth larvae, and the metabolites probably have higher bioavailabilities than the original large-molecular ETs of the leaves of P. strobilacea.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Taninos Hidrolizables/metabolismo , Juglandaceae/química , Larva/metabolismo , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Polifenoles/metabolismo , Animales , Digestión , Mariposas Nocturnas
11.
Molecules ; 26(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066494

RESUMEN

Mango is rich in polyphenols including gallotannins and gallic acid, among others. The bioavailability of mango polyphenols, especially polymeric gallotannins, is largely dependent on the intestinal microbiota, where the generation of absorbable metabolites depends on microbial enzymes. Mango polyphenols can favorably modulate bacteria associated with the production of bioactive gallotannin metabolites including Lactobacillus plantarum, resulting in intestinal health benefits. In several studies, the prebiotic effects of mango polyphenols and dietary fiber, their potential contribution to lower intestinal inflammation and promotion of intestinal integrity have been demonstrated. Additionally, polyphenols occurring in mango have some potential to interact with intestinal and less likely with hepatic enzymes or transporter systems. This review provides an overview of interactions of mango polyphenols with the intestinal microbiome, associated health benefits and underlying mechanisms.


Asunto(s)
Antiinflamatorios/farmacología , Intestinos/efectos de los fármacos , Hígado/enzimología , Polifenoles/química , Animales , Fibras de la Dieta/análisis , Ácido Gálico/química , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Taninos Hidrolizables/metabolismo , Inflamación , Mangifera , Ratones , Extractos Vegetales/química , Prebióticos , Ratas
12.
Plant J ; 107(5): 1466-1477, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34174125

RESUMEN

Rubus chingii Hu (Fu-Pen-Zi), a perennial woody plant in the Rosaceae family, is a characteristic traditional Chinese medicinal plant because of its unique pharmacological effects. There are abundant hydrolyzable tannin (HT) components in R. chingii that provide health benefits. Here, an R. chingii chromosome-scale genome and related functional analysis provide insights into the biosynthetic pathway of HTs. In total, sequence data of 231.21 Mb (155 scaffolds with an N50 of 8.2 Mb) were assembled into seven chromosomes with an average length of 31.4 Mb, and 33 130 protein-coding genes were predicted, 89.28% of which were functionally annotated. Evolutionary analysis showed that R. chingii was most closely related to Rubus occidentalis, from which it was predicted to have diverged 22.46 million years ago (Table S8). Comparative genomic analysis showed that there was a tandem gene cluster of UGT, carboxylesterase (CXE) and SCPL genes on chromosome 02 of R. chingii, including 11 CXE, eight UGT, and six SCPL genes, which may be critical for the synthesis of HTs. In vitro enzyme assays indicated that the proteins encoded by the CXE (LG02.4273) and UGT (LG02.4102) genes have tannin hydrolase and gallic acid glycosyltransferase functions, respectively. The genomic sequence of R. chingii will be a valuable resource for comparative genomic analysis within the Rosaceae family and will be useful for understanding the biosynthesis of HTs.


Asunto(s)
Vías Biosintéticas , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Taninos Hidrolizables/metabolismo , Rubus/genética , Evolución Molecular , Genómica , Familia de Multigenes , Rubus/metabolismo
13.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 630-638, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33480135

RESUMEN

The objective of this study was to investigate the effects of origanum oil (ORO), hydrolysable tannins (HYT) and tea saponin (TES) on methane (CH4 ) emission, rumen fermentation, productive performance and gas exchange in sheep by using in vitro and in vivo methods. The ORO, HYT and TES additive levels were normalized per kg dry matter (DM) in both in vitro and in vivo experiments: ORO-0, 10, 20 and 40 ml/kg; HYT-0, 15, 30 and 60 g/kg; and TES-0, 15, 30 and 60 g/kg, respectively. During in vitro incubation, 40 ml/kg ORO linearly decreased CH4 emission (p < 0.05); 20 and 40 ml/kg ORO cubically decreased carbon dioxide (CO2 ) production (p < 0.05), and rumen pH was cubically raised with the increasing ORO additive level (p < 0.01). The 60 g/kg HYT cubically decreased CH4 production (p < 0.05). The pH of 60 g/kg HYT was higher than that of 15 and 30 g/kg (p < 0.01); the pH of 20 g/kg TES was higher than that of 5 g/kg (p < 0.05). In the in vivo experiments, 40 ml/kg ORO inhibited dry matter intake (p < 0.01) cubically and reduced average daily gain (ADG) and feed conversion ratio (FCR) cubically (p < 0.05), and 20 or 40 ml/kg ORO linearly decreased CH4 production based on per day or metabolic weight (W0.75 ) (p < 0.05). Both 30 and 60 g/kg HYT linearly inhibited CH4 emission on the bases of per day and W0.75 (p < 0.05). The 20 g/kg TES improved the apparent digestibility of crude protein (p < 0.05), 10 and 20 g/kg of TES decreased CH4 emission (p < 0.05), and 5 g/kg of TES reduced O2 consumption and CO2 production (p < 0.05). In conclusion, these three plant extracts all showed the abilities on mitigating CH4 emission of sheep with appropriate additive ranges.


Asunto(s)
Metano , Saponinas , Animales , Dieta/veterinaria , Digestión , Femenino , Fermentación , Taninos Hidrolizables/metabolismo , Lactancia , Metano/metabolismo , Leche , Aceites Volátiles , Rumen/metabolismo , Rumiantes , Saponinas/farmacología , Ovinos , Ensilaje/análisis , Té/metabolismo
14.
Molecules ; 27(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35011353

RESUMEN

Inhibition of fructose absorption may suppress adiposity and adiposity-related diseases caused by fructose ingestion. Eucalyptus leaf extract (ELE) inhibits intestinal fructose absorption (but not glucose absorption); however, its active compound has not yet been identified. Therefore, we evaluated the inhibitory activity of ELE obtained from Eucalyptus globulus using an intestinal fructose permeation assay with the human intestinal epithelial cell line Caco-2. The luminal sides of a cell monolayer model cultured on membrane filters were exposed to fructose with or without the ELE. Cellular fructose permeation was evaluated by measuring the fructose concentration in the medium on the basolateral side. ELE inhibited 65% of fructose absorption at a final concentration of 1 mg/mL. Oenothein B isolated from the ELE strongly inhibited fructose absorption; the inhibition rate was 63% at a final concentration of 5 µg/mL. Oenothein B did not affect glucose absorption. In contrast, the other major constituents (i.e., gallic acid and ellagic acid) showed little fructose-inhibitory activity. To our knowledge, this is the first report that oenothein B in ELE strongly inhibits fructose absorption in vitro. ELE containing oenothein B can prevent and ameliorate obesity and other diseases caused by dietary fructose consumption.


Asunto(s)
Eucalyptus/química , Fructosa/metabolismo , Taninos Hidrolizables/química , Extractos Vegetales/química , Hojas de la Planta/química , Células CACO-2 , Permeabilidad de la Membrana Celular , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Taninos Hidrolizables/metabolismo , Absorción Intestinal/efectos de los fármacos , Intestinos , Extractos Vegetales/metabolismo , Polifenoles/química , Povidona/análogos & derivados , Povidona/química
15.
Cell Biol Int ; 44(12): 2553-2569, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32902904

RESUMEN

Triple-negative breast cancers (TNBC) are highly aggressive and drug resistant accounting for majority of cases with poor outcome. Purified natural compounds display substantial anticancer activity with reduced cytotoxicity providing a new avenue to combat TNBC. Chebulinic acid (CA), a polyphenol derived from the fruits of various medicinal plants has potent anticancer activity. Here, we demonstrate that CA shows significant cytotoxicity against triple negative MDA-MB-231 cells. CA exhibited cytotoxicity to MDA-MB-231 cells in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Further, CA mitigated MDA-MB-231 cells viability and proliferation as shown by reduced live cell count, crystal violet staining, colony formation assay, soft agar assay and cell cycle analysis. Wound healing assay and trans-well migration assay demonstrated that CA significantly inhibited migration of MDA-MB-231 cells. Also reduced MMP9 expression was observed in CA-treated cells by gelatin zymography. CA negatively regulated mesenchymal characteristics of MDA-MB-231 cells demonstrated by F-actin staining and reduced expression of N-cadherin by confocal microscopy and western blot analysis. Annexin V/propidium iodide (PI) and active caspase-3 staining showed that CA was able to induce apoptosis in MDA-MB-231 cells but did not activate caspase-3. Two-dimensional gel electrophoresis based proteomic analysis demonstrated that CA regulated proteins belonging to the oxidative stress pathway, apoptotic pathway and proteins with antiproliferative activity. Western blot analysis analysis revealed that CA negatively regulated superoxide dismutase 1 (SOD1) and enhanced oxidative stress in MDA-MB-231 cells. SOD1 in-gel activity assay also showed reduced SOD1 activity upon CA treatment. Overexpression studies with GFP-LC3 and tandem tagged RFP-GFP-LC-3 also demonstrated enhanced autophagy upon CA treatment.


Asunto(s)
Taninos Hidrolizables/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Apoptosis/genética , Autofagia/genética , Muerte Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Taninos Hidrolizables/farmacología , Metástasis de la Neoplasia/genética , Proteómica/métodos , Superóxido Dismutasa-1/metabolismo , Neoplasias de la Mama Triple Negativas/genética
16.
DNA Res ; 27(2)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32426807

RESUMEN

Cornus officinalis, an important traditional medicinal plant, is used as major constituents of tonics, analgesics, and diuretics. While several studies have focused on its characteristic bioactive compounds, little is known on their biosynthesis. In this study, we performed LC-QTOF-MS-based metabolome and RNA-seq-based transcriptome profiling for seven tissues of C. officinalis. Untargeted metabolome analysis assigned chemical identities to 1,215 metabolites and showed tissue-specific accumulation for specialized metabolites with medicinal properties. De novo transcriptome assembly established for C. officinalis showed 96% of transcriptome completeness. Co-expression analysis identified candidate genes involved in the biosynthesis of iridoids, triterpenoids, and gallotannins, the major group of bioactive metabolites identified in C. officinalis. Integrative omics analysis identified 45 cytochrome P450s genes correlated with iridoids accumulation in C. officinalis. Network-based integration of genes assigned to iridoids biosynthesis pathways with these candidate CYPs further identified seven promising CYPs associated with iridoids' metabolism. This study provides a valuable resource for further investigation of specialized metabolites' biosynthesis in C. officinalis.


Asunto(s)
Cornus/genética , Metaboloma , Transcriptoma , Cornus/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Genómica/métodos , Taninos Hidrolizables/metabolismo , Iridoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo
17.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230810

RESUMEN

Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.


Asunto(s)
Biomimética/métodos , Hidrogeles/química , Taninos Hidrolizables/metabolismo , Plantas/metabolismo , Polisacáridos/química , Fosfatasa Alcalina/metabolismo , Antibacterianos/farmacología , Materiales Biocompatibles , Regeneración Ósea , Calcificación Fisiológica/efectos de los fármacos , Fosfatos de Calcio , Humanos , Taninos Hidrolizables/farmacología , Mangifera/química , Minerales/química , Osteoblastos/metabolismo , Extractos Vegetales/química , Polifenoles/química , Polisacáridos Bacterianos
18.
Food Chem ; 296: 40-46, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31202304

RESUMEN

Gallotannin 1,2,6-tri-O-galloyl-ß-d-glucopyranose (1,2,6-TGGP) plays multiple roles against multidrug-resistant bacteria and other diseases. Nevertheless, its availability in tea (Camellia sinensis) has rarely been reported. Herein, the identification and verification of 1,2,6-TGGP from Camellia sinensis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-qTOF MS/MS), electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) were reported. The isolated 1,2,6-TGGP was used for the chemotaxonomy analysis of 17 tea cultivars. The contents of 1,2,6-TGGP ranged from 1.96 to 43.20 mg g-1, with a mean of 13.75 mg g-1. Relatively high 1,2,6-TGGP contents (>30 mg g-1) in two tea cultivars indicate that the beneficial effects of 1,2,6-TGGP can be obtained by consuming these teas. The chemotaxonomy analysis showed a biosynthetic relation between 1,2,6-TGGP and gallic acid. Further analysis showed that the 1,2,6-TGGP contents significantly decreased with the plucking times irrespective of the cultivars. Moreover, a positive and significant correlation was also observed between 1,2,6-TGGP and gallic acid. The identification of tea cultivars that are rich in 1,2,6-TGGP was first reported and the obtained results should boost their potential use in food and medicine.


Asunto(s)
Camellia sinensis/química , Taninos Hidrolizables/análisis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Variación Genética , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Espectrometría de Masas en Tándem
19.
Mol Biol Rep ; 46(4): 3701-3711, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31006095

RESUMEN

Nowadays, medicinal plants have been widely used everywhere to provide essential care for many disorders including diabetes. Recent reports assumed that the antidiabetic activities of pomegranate aril juice (PAJ) may be ascribed to its punicalagin (PCG). Therefore, the present study evaluated and compared the antidiabetic activities of PAJ and its PCG, and monitored some mechanisms of their actions in streptozotocin-nicotinamide (STZ-NA) type 2 diabetic rats. STZ-NA diabetic rats were given, orally/daily, PAJ (100 or 300 mg/kg body weight, containing 2.6 and 7.8 mg of PCG/kg body weight, respectively), pure PCG (2.6 or 7.8 mg/kg body weight), or distilled water (vehicle) for 6 weeks. PAJ (especially at the high dose) alleviated significantly (P < 0.05-0.001) most signs of type 2 diabetes including body-weight loss, insulin resistance (IR) and hyperglycemia through decreasing serum tumor necrosis factor-α concentration and the expression of hepatic c-Jun N-terminal kinase, and increasing the skeletal muscle weight and the expression of hepatic insulin receptor substrate-1 in STZ-NA diabetic rats. Also, it decreased significantly (P < 0.001) the oxidative liver injury in STZ-NA diabetic rats through decreasing the hepatic lipid peroxidation and nitric oxide production, and improving the hepatic antioxidant defense system. Although the low dose of PCG induced some modulation in STZ-NA diabetic rats, the high dose of PCG did not show any valuable antidiabetic activity, but induced many side effects. In conclusion, PAJ was safer and more effective than pure PCG in alleviating IR and oxidative liver injury in STZ-NA diabetic rats.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Taninos Hidrolizables/administración & dosificación , Taninos Hidrolizables/uso terapéutico , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/patología , Niacinamida/administración & dosificación , Granada (Fruta)/metabolismo , Estreptozocina/administración & dosificación , Animales , Antioxidantes/metabolismo , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Taninos Hidrolizables/metabolismo , Hiperglucemia/tratamiento farmacológico , Proteínas Sustrato del Receptor de Insulina/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Niacinamida/metabolismo , Óxido Nítrico/metabolismo , Ratas , Estreptozocina/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos
20.
Nutr Neurosci ; 22(3): 185-195, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28784051

RESUMEN

OBJECTIVES: Urolithins, ellagitannin-gut microbial-derived metabolites, have been reported to mediate pomegranate's neuroprotective effects against Alzheimer's disease (AD), but there are limited data on their effects against neuroinflammation. Herein, we: (1) evaluated whether urolithins (urolithins A and B and their methylated derivatives) attenuate neuroinflammation in murine BV-2 microglia and human SH-SY5Y neurons, and (2) evaluated hippocampus of transgenic AD (R1.40) mice administered a pomegranate extract (PE; 100 or 200 mg/kg/day for 3 weeks) for inflammatory biomarkers. METHODS: Effects of urolithins (10 µM) on inflammatory biomarkers were evaluated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. In a non-contact co-culture cell model, SH-SY5Y cell viability was assessed after exposure to media collected from LPS-BV-2 cells treated with or without urolithins. Effects of urolithins on apoptosis and caspase 3/7 and 9 release from H2O2-induced oxidative stress of BV-2 and SH-SY5Y cells were assessed. Hippocampal tissues of vehicle and PE-treated transgenic R1.40 mice were evaluated for gene expression of inflammatory biomarkers by qRT-PCR. RESULTS: Urolithins decreased media levels of nitric oxide, interleukin 6 (IL-6), prostaglandin E2, and tumor necrosis factor alpha from LPS-BV-2 microglia. In the co-culture cell model, media from LPS-BV-2 cells treated with urolithins preserved SH-SY5Y cell viability greater than media from cells treated without urolithins. Urolithins mitigated apoptosis and caspase 3/7 and 9 release from H2O2-induced oxidative stress of BV-2 and SH-SY5Y cells. While not statistically significant, inflammatory biomarkers (TNF-α, COX-2, IL-1, and IL-6) appeared to follow a decreasing trend in the hippocampus of high-dose PE-treated animals compared to controls. DISCUSSION: The attenuation of neuroinflammation by urolithins may contribute, in part, toward pomegranate's neuroprotective effects against AD.


Asunto(s)
Cumarinas/administración & dosificación , Encefalitis/metabolismo , Microbioma Gastrointestinal , Taninos Hidrolizables/metabolismo , Lythraceae/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Encefalitis/inducido químicamente , Encefalitis/prevención & control , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Mediadores de Inflamación , Lipopolisacáridos/administración & dosificación , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA